An analytical method for solving the two-phase inverse Stefan problem

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An analytical method for solving the two-phase inverse Stefan problem

In the paper we present an application of the homotopy analysis method for solving the two-phase inverse Stefan problem. In the proposed approach a series is created, having elements which satisfy some differential equation following from the investigated problem. We reveal, in the paper, that if this series is convergent then its sum determines the solution of the original equation. A sufficie...

متن کامل

the algorithm for solving the inverse numerical range problem

برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.

15 صفحه اول

Nonlinear Two-Phase Stefan Problem

In this paper we consider a nonlinear two-phase Stefan problem in one-dimensional space. The problem is mapped into a nonlinear Volterra integral equation for the free boundary.

متن کامل

A meshless method for an inverse two-phase one-dimensional nonlinear Stefan problem

We extend a meshless method of fundamental solutions recently proposed by the authors for the one-dimensional two-phase nverse linear Stefan problem, to the nonlinear case. In this latter situation the free surface is also considered unknown which is ore realistic from the practical point of view. Building on the earlier work, the solution is approximated in each phase by a linear ombination of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bulletin of the Polish Academy of Sciences Technical Sciences

سال: 2015

ISSN: 2300-1917

DOI: 10.1515/bpasts-2015-0068